
Distributed Programming Reasoning about Synchronous Message Passing

Message Passing

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1

Distributed Programming Reasoning about Synchronous Message Passing

Where we are at

Last week, we saw semaphores and monitors, concluding our
examination of shared variable concurrency.

For the rest of this course, our focus will be on message passing.

2

Distributed Programming Reasoning about Synchronous Message Passing

Distributed Programming

distributed program: processes can be distributed across
machines → no shared memory (usually)
processes share communication channels for message
passing
languages: Promela (synchronous and asynchronous
MP), Java (RPC, RMI, . . .)
libraries: sockets, message passing interface (MPI),
parallel virtual machine (PVM) etc.

3

Distributed Programming Reasoning about Synchronous Message Passing

Message Passing
A channel is a typed FIFO queue between processes.

Ben-Ari Promela
send a message ch ⇐ x ch ! x
recieve a message ch ⇒ y ch ? y

Synchronous channels

A synchronous channel has queue capacity 0. Both the send and
the receive operation block until both are ready. When they are,
they execute at the same time, and assign the value of x to y.

Asynchronous channels

For asynchronous channels, send doesn’t block. It appends the
value of x to the queue of ch. Receive blocks, until ch contains a
message. When it does, the oldest message is removed, and its
content is stored in y.

4

Distributed Programming Reasoning about Synchronous Message Passing

Message Passing
A channel is a typed FIFO queue between processes.

Ben-Ari Promela
send a message ch ⇐ x ch ! x
recieve a message ch ⇒ y ch ? y

Synchronous channels

A synchronous channel has queue capacity 0. Both the send and
the receive operation block until both are ready. When they are,
they execute at the same time, and assign the value of x to y.

Asynchronous channels

For asynchronous channels, send doesn’t block. It appends the
value of x to the queue of ch. Receive blocks, until ch contains a
message. When it does, the oldest message is removed, and its
content is stored in y.

5

Distributed Programming Reasoning about Synchronous Message Passing

Message Passing
A channel is a typed FIFO queue between processes.

Ben-Ari Promela
send a message ch ⇐ x ch ! x
recieve a message ch ⇒ y ch ? y

Synchronous channels

A synchronous channel has queue capacity 0. Both the send and
the receive operation block until both are ready. When they are,
they execute at the same time, and assign the value of x to y.

Asynchronous channels

For asynchronous channels, send doesn’t block. It appends the
value of x to the queue of ch. Receive blocks, until ch contains a
message. When it does, the oldest message is removed, and its
content is stored in y.

6

Distributed Programming Reasoning about Synchronous Message Passing

Taxonomy of Asynchronous Message Passing

Asynchronous channels may be...

Reliable: all messages sent will eventually arrive.

Lossy: messages may be lost in transit.

FIFO: messages will arrive in order.

Unordered: messages can arrive out-of-order.

Error-detecting: received messages aren’t garbled in transit (or if
they are, we can tell).

Example

TCP is reliable and FIFO. UDP is lossy and unordered, but
error-detecting.

7

Distributed Programming Reasoning about Synchronous Message Passing

Taxonomy of Asynchronous Message Passing

Asynchronous channels may be...

Reliable: all messages sent will eventually arrive.

Lossy: messages may be lost in transit.

FIFO: messages will arrive in order.

Unordered: messages can arrive out-of-order.

Error-detecting: received messages aren’t garbled in transit (or if
they are, we can tell).

Example

TCP is reliable and FIFO. UDP is lossy and unordered, but
error-detecting.

8

Distributed Programming Reasoning about Synchronous Message Passing

Algorithm 2.1: Producer-consumer (channels)
channel of integer ch

producer consumer
integer x integer y
loop forever loop forever

p1: x ← produce q1: ch ⇒ y
p2: ch ⇐ x q2: consume(y)

9

Distributed Programming Reasoning about Synchronous Message Passing

Conway’s Problem

Example

Input on channel inC: a sequence of characters
Output on channel outC:

The sequence of characters from inC, with runs of 2 ≤ n ≤ 9
occurrences of the same character c replaced by the n and c

a newline character after every K th character in the output.

Let’s use message-passing for separation of concerns:

- - -compress output
inC pipe outC

10

Distributed Programming Reasoning about Synchronous Message Passing

Conway’s Problem

Example

Input on channel inC: a sequence of characters
Output on channel outC:

The sequence of characters from inC, with runs of 2 ≤ n ≤ 9
occurrences of the same character c replaced by the n and c

a newline character after every K th character in the output.

Let’s use message-passing for separation of concerns:

- - -compress output
inC pipe outC

11

Distributed Programming Reasoning about Synchronous Message Passing

Algorithm 2.2: Conway’s problem
constant integer MAX ← 9
constant integer K ← 4
channel of integer inC, pipe, outC

compress output
char c, previous ← 0 char c
integer n ← 0 integer m ← 0
inC ⇒ previous
loop forever loop forever

p1: inC ⇒ c q1: pipe ⇒ c
p2: if (c = previous) and q2: outC ⇐ c

(n < MAX − 1)
p3: n ← n + 1 q3: m ← m + 1

else
p4: if n > 0 q4: if m >= K
p5: pipe ⇐ i2c(n+1) q5: outC ⇐ newline
p6: n ← 0 q6: m ← 0
p7: pipe ⇐ previous q7:

p8: previous ← c q8:

12

Distributed Programming Reasoning about Synchronous Message Passing

Reminder: Matrix Multiplication

Example1 2 3
4 5 6
7 8 9

×
1 0 2

0 1 2
1 0 0

 =

 4 2 6
10 5 18
16 8 30

Let p, q, r ∈ N. Let A = (ai ,j)1≤i≤p
1≤j≤q

∈ Tp×q and

B = (bj ,k)1≤j≤q
1≤k≤r

∈ Tq×r be two (compatible) matrices. Recall that

the matrix C = (ci ,k)1≤i≤p
1≤k≤r

∈ Tp×r is their product, A× B, iff, for

all 1 ≤ i ≤ p and 1 ≤ k ≤ r :

ci ,j =

q∑
j=1

ai ,jbj ,k

13

Distributed Programming Reasoning about Synchronous Message Passing

Reminder: Matrix Multiplication

Example1 2 3
4 5 6
7 8 9

×
1 0 2

0 1 2
1 0 0

 =

 4 2 6
10 5 18
16 8 30

Let p, q, r ∈ N. Let A = (ai ,j)1≤i≤p

1≤j≤q
∈ Tp×q and

B = (bj ,k)1≤j≤q
1≤k≤r

∈ Tq×r be two (compatible) matrices. Recall that

the matrix C = (ci ,k)1≤i≤p
1≤k≤r

∈ Tp×r is their product, A× B, iff, for

all 1 ≤ i ≤ p and 1 ≤ k ≤ r :

ci ,j =

q∑
j=1

ai ,jbj ,k

14

Distributed Programming Reasoning about Synchronous Message Passing

Algorithms for Matrix Multiplication

The standard algorithm for matrix multiplication is:

for all rows i of A do:
for all columns k of B do:

set ci ,k to 0
for all columns j of A do:

add ai ,jbj ,k to ci ,k

Because of the three nested loops, its complexity is O(p · q · r).

In
case both matrices are quadratic, i.e., p = q = r , that’s O(p3).

15

Distributed Programming Reasoning about Synchronous Message Passing

Algorithms for Matrix Multiplication

The standard algorithm for matrix multiplication is:

for all rows i of A do:
for all columns k of B do:

set ci ,k to 0
for all columns j of A do:

add ai ,jbj ,k to ci ,k

Because of the three nested loops, its complexity is O(p · q · r). In
case both matrices are quadratic, i.e., p = q = r , that’s O(p3).

16

Distributed Programming Reasoning about Synchronous Message Passing

Process Array for Matrix Multiplication

Sink Sink Sink

Result

Result

Result

Zero

Zero

Zero

Source Source Source

����

����

����
?

?

?

?

?

?

?

?

?

?

?

?

1 2 3

4 5 6

7 8 9

4,2,6 3,2,4 3,0,0 0,0,0

10,5,18 6,5,10 6,0,0 0,0,0

16,8,30 9,8,16 9,0,0 0,0,0

2
0
1

2
0
1

2
0
1

2
0
1

2
1
0

2
1
0

2
1
0

2
1
0

0
0
1

0
0
1

0
0
1

0
0
1

17

Distributed Programming Reasoning about Synchronous Message Passing

Computation of One Element

Result Zero7 8 9 ����

? ? ?2 2 0

001630

18

Distributed Programming Reasoning about Synchronous Message Passing

Algorithm 2.3: Multiplier process with channels
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
p1: North ⇒ SecondElement
p2: East ⇒ Sum
p3: Sum ← Sum + FirstElement · SecondElement
p4: South ⇐ SecondElement
p5: West ⇐ Sum

19

Distributed Programming Reasoning about Synchronous Message Passing

Algorithm 2.4: Multiplier with channels and selective input
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
either

p1: North ⇒ SecondElement
p2: East ⇒ Sum

or
p3: East ⇒ Sum
p4: North ⇒ SecondElement
p5: South ⇐ SecondElement
p6: Sum ← Sum + FirstElement · SecondElement
p7: West ⇐ Sum

20

Distributed Programming Reasoning about Synchronous Message Passing

Multiplier Process in Promela

1 proctype Multiplier(byte Coeff;

2 chan North;

3 chan East;

4 chan South;

5 chan West)

6 {

7 byte Sum, X;

8 for (i : 0..(SIZE-1)) {

9 if :: North ? X -> East ? Sum;

10 :: East ? Sum -> North ? X;

11 fi;

12 South ! X;

13 Sum = Sum + X*Coeff;

14 West ! Sum;

15 }

16 }
21

Distributed Programming Reasoning about Synchronous Message Passing

Algorithm 2.5: Dining philosophers with channels
channel of boolean forks[5]

philosopher i fork i
boolean dummy boolean dummy
loop forever loop forever

p1: think q1: forks[i] ⇐ true
p2: forks[i] ⇒ dummy q2: forks[i] ⇒ dummy
p3: forks[i+1] ⇒ dummy q3:

p4: eat q4:

p5: forks[i] ⇐ true q5:

p6: forks[i+1] ⇐ true q6:

NB

The many shared channels make it possible to give forks directly to
other philosophers, rather than putting them back on the table.

22

Distributed Programming Reasoning about Synchronous Message Passing

Synchronous Message Passing

Recall that, when message passing is synchronous, the exchange of
a message requires coordination between sender and receiver
(sometimes called a handshaking mechanism).

In other words, the sender is blocked until the receiver is ready to
cooperate.

23

Distributed Programming Reasoning about Synchronous Message Passing

Synchronous Transition Diagrams

Definition

A synchronous transition diagram is a parallel composition
P1 ‖ . . . ‖ Pn of n (sequential) transition diagrams P1, . . . , Pn

called processes.
The processes Pi

do not share variables

communicate along channels C ,D, . . . connecting processes
by way of

output statements C ⇐ e
for sending the value of expression e along channel C
input statements C ⇒ x
for receiving a value along channel C into variable x

24

Distributed Programming Reasoning about Synchronous Message Passing

Edges in (Sequential) Transition Diagrams

For shared variable concurrency, labels b; f , where b is a Boolean
condition and f is a state transformation sufficed.

Example

t = 1; x ← 5
` `′

Now, we call such transitions internal.

25

Distributed Programming Reasoning about Synchronous Message Passing

I/O Transitions

We extend this notation to message passing by allowing the guard
to be combined with an input or an output statement:

` `′
b;C ⇒ x ; f

` `′
b;C ⇐ e; f

26

Distributed Programming Reasoning about Synchronous Message Passing

Example 1

Let P = P1 ‖ P2 be given as:

s1 t1C ⇐ 1 ‖ s2 t2C ⇒ x

Obviously, {>} P {x = 1}, but how to prove it?

27

Distributed Programming Reasoning about Synchronous Message Passing

Some notation

For an n-tuple x = 〈x1, . . . , xi , . . . , xn〉, we define

x [i ← e] = 〈x1, . . . , e, . . . , xn〉

x [i ← e] is like x , except the i :th element is replaced with e.

Example

〈1, 5, 7〉[2← 3] = 〈1, 3, 7〉

28

Distributed Programming Reasoning about Synchronous Message Passing

Semantics: Closed Product

Definition

The closed product of Pi = (Li ,Ti , si , ti), for 1 ≤ i ≤ n (with
disjoint local variable sets), is defined as P = (L,T , s, t), where:

L = L1 × . . .× Ln s = 〈s1, . . . , sn〉 t = 〈t1, . . . , tn〉

and `
a→ `′ ∈ T holds iff

1 `′ = `[i → `′i] and `i
a−→ `′i ∈ Ti is an internal transition, or

2 `′ = `[i → `′i][j → `′j] and i 6= j ,

with `i
b;C⇐e;f−−−−−→ `′i ∈ Ti and `j

b′;C⇒x ;g−−−−−−→ `′j ∈ Tj , and
a = b ∧ b′; f ◦ g ◦ Jx ← eK

29

Distributed Programming Reasoning about Synchronous Message Passing

Example 1 cont’d

s1 t1C ⇐ 1 ‖ s2 t2C ⇒ x

Observe that the closed product is just

〈s1,s2〉 〈t1,t2〉
x ← 1

so validity of {>} P {x = 1} follows from

|= > =⇒ (x = 1) ◦ Jx ← 1K

which is immediate.

(See the glossary of notation for the meaning of all these strange

symbols.)

30

Distributed Programming Reasoning about Synchronous Message Passing

Verification
To show that the Hoare triple

{φ} P1 ‖ . . . ‖ Pn {ψ}

is valid, it suffices to prove

{φ} P {ψ}

where P is the closed product of the Pi .

There are no I/O transitions in P, so Floyd’s method works.

Disadvantage

As with the product construction for shared-variable concurrency,
the closed product is exponential in the number of processes.

Is there an Owicki-Gries equivalent for synchronous message
passing?

31

Distributed Programming Reasoning about Synchronous Message Passing

Verification
To show that the Hoare triple

{φ} P1 ‖ . . . ‖ Pn {ψ}

is valid, it suffices to prove

{φ} P {ψ}

where P is the closed product of the Pi .

There are no I/O transitions in P, so Floyd’s method works.

Disadvantage

As with the product construction for shared-variable concurrency,
the closed product is exponential in the number of processes.

Is there an Owicki-Gries equivalent for synchronous message
passing?

32

Distributed Programming Reasoning about Synchronous Message Passing

Verification
To show that the Hoare triple

{φ} P1 ‖ . . . ‖ Pn {ψ}

is valid, it suffices to prove

{φ} P {ψ}

where P is the closed product of the Pi .

There are no I/O transitions in P, so Floyd’s method works.

Disadvantage

As with the product construction for shared-variable concurrency,
the closed product is exponential in the number of processes.

Is there an Owicki-Gries equivalent for synchronous message
passing?

33

Distributed Programming Reasoning about Synchronous Message Passing

Verification
To show that the Hoare triple

{φ} P1 ‖ . . . ‖ Pn {ψ}

is valid, it suffices to prove

{φ} P {ψ}

where P is the closed product of the Pi .

There are no I/O transitions in P, so Floyd’s method works.

Disadvantage

As with the product construction for shared-variable concurrency,
the closed product is exponential in the number of processes.

Is there an Owicki-Gries equivalent for synchronous message
passing?

34

Distributed Programming Reasoning about Synchronous Message Passing

A Simplistic Method

For each location ` in some Li , find a local predicate Q`, only
depending on Pi ’s local variables.

1 Prove that, for all i , the local verification conditions hold, i.e.,

|= Q` ∧ b → Q`′ ◦ f for each `
b;f−−→ `′ ∈ Ti .

2 For all i 6= j and matching pairs of I/O transitions

`i
b;C⇐e;f−−−−−→ `′i ∈ Ti and `j

b′;C⇒x ;g−−−−−−→ `′j ∈ Tj show that

|= Q`i ∧ Q`j ∧ b ∧ b′ =⇒ (Q`′i
∧ Q`′j

) ◦ f ◦ g ◦ Jx ← eK .

3 Prove |= φ =⇒ Qs1 ∧ . . .∧Qsn and |= Qt1 ∧ . . .∧Qtn =⇒ ψ.

35

Distributed Programming Reasoning about Synchronous Message Passing

Proof of Example 1

〈s1,s2〉 〈t1,t2〉
x ← 1

There are no internal transitions. There’s one matching pair.

> =⇒ (x = 1) ◦ Jx ← 1K ≡ 1 = 1

≡ >

36

Distributed Programming Reasoning about Synchronous Message Passing

Soundness & Incompleteness

The simplistic method is sound but not complete.
It generates proof obligations for all syntactically matching I/O
transition pairs, regardless of whether these pairs can actually be
matched semantically (in an execution).

37

Distributed Programming Reasoning about Synchronous Message Passing

Example 2

Let P = P1 ‖ P2 be given as:

s1 `1 t1
C ⇐ 1

T1

C ⇐ 2

T2
‖ s2 `2 t2

C ⇒ x

T3

C ⇒ x

T4

We cannot prove {>} P {x = 2} using the simplistic method.
Proof obligations for the transition pairs (T1,T4) and (T2,T3)
must be discharged. This leads to a contradiction: no assertion
network can make the simplistic method work for this example.

38

Distributed Programming Reasoning about Synchronous Message Passing

Remedy 1: Adding Shared Auxiliary Variables

Use shared, write-only auxiliary variables to relate locations in
different processes. Only output transitions need to be augmented
with assignments to these shared auxiliary variables.

Pro easy

Con incomplete when channels are shared between more
than two process.

Con re-introduces interference freedom tests for matching

pairs `i
bi ;C⇐e;fi−−−−−−→ `′i ∈ Ti and `j

bj ;C⇒x ;fj−−−−−−→ `′j ∈ Tj ,
and location `m of process Pm, m 6= i , j :

|= Q`i ∧Q`j ∧Q`m ∧bi ∧bj =⇒ Q`m ◦ fi ◦ fj ◦ Jx ← eK

[This method is due to Levin & Gries.]

39

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2
C ⇒ x C ⇒ x

C ⇐ 1 C ⇐ 2

40

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2
C ⇒ x C ⇒ x

C ⇐ 1; k ← 1 C ⇐ 2; k ← 2

41

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2
C ⇒ x C ⇒ x

C ⇐ 1; k ← 1 C ⇐ 2; k ← 2

k = 0 k = 1 k = 2

k = 0 k = 1 k = 2 ∧ x = 2

42

Distributed Programming Reasoning about Synchronous Message Passing

Levin & Gries-style Proof for Example 2

There are no internal transitions. Four matching I/O transition
pairs exist, the same as in the simplistic method. Proof
obligations:

k = 0 =⇒ (k = 1) ◦ Jk ← 1K ◦ Jx ← 1K (1)

k = 0 ∧ k = 1 =⇒ (k = 1 ∧ k = 2 ∧ x = 2) ◦ Jk ← 1K ◦ Jx ← 1K
(2)

k = 1 ∧ k = 0 =⇒ (k = 2 ∧ k = 1) ◦ Jk ← 2K ◦ Jx ← 2K (3)

k = 1 =⇒ (k = 2 ∧ x = 2) ◦ Jk ← 2K ◦ Jx ← 2K (4)

No interference freedom proof obligations are generated in this
example since there is no third process.

43

Distributed Programming Reasoning about Synchronous Message Passing

Levin & Gries-style Proof for Example 2 cont’d

Thanks to contradictory assumptions about k, (2) and (3) are
vacuously true.

The right-hand-sides of the implications (1) and (4) simplify to >,
which discharges those proof obligations, e.g., for the RHS of (1):

(k = 1) ◦ Jk ← 1K ◦ Jx ← 1K ≡ 1 = 1

≡ >

44

Distributed Programming Reasoning about Synchronous Message Passing

Remedy 2: Local Auxiliary Variables + Invariant

Use local, write only auxiliary variables + a global communication
invariant I to relate values of local auxiliary variables in the various
processes.

Pro no interference freedom tests

Con more complicated proof obligation for communication
steps:

|= Q`i∧Q`j∧b∧b
′∧I =⇒ (Q`′i

∧Q`′j
∧I)◦f ◦g◦Jx ← eK

[This is the AFR method, named for Apt, Francez, and de Roever.]

45

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2

C ⇐ 1 C ⇐ 2

C ⇒ x C ⇒ x

46

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2

C ⇐ 1; k1 ← 1 C ⇐ 2; k1 ← 2

C ⇒ x ; k2 ← 1 C ⇒ x ; k2 ← 2

47

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2

C ⇐ 1; k1 ← 1 C ⇐ 2; k1 ← 2

C ⇒ x ; k2 ← 1 C ⇒ x ; k2 ← 2

k1 = 0 k1 = 1 k1 = 2

k2 = 0 k2 = 1 k2 = 2 ∧ x = 2

48

Distributed Programming Reasoning about Synchronous Message Passing

Example 2 cont’d

s1 `1 t1

s2 `2 t2

C ⇐ 1; k1 ← 1 C ⇐ 2; k1 ← 2

C ⇒ x ; k2 ← 1 C ⇒ x ; k2 ← 2

k1 = 0 k1 = 1 k1 = 2

k2 = 0 k2 = 1 k2 = 2 ∧ x = 2

Define I ≡ (k1 = k2).

49

Distributed Programming Reasoning about Synchronous Message Passing

AFR-style Proof for Example 2
There are no internal transitions. Four matching pairs of I/O
transitions exist, with these proof obligations:

k1 = 0 ∧ k2 = 0 ∧ k1 = k2 =⇒
(k1 = 1 ∧ k2 = 1 ∧ k1 = k2) ◦ Jk1 ← 1K ◦ Jk2 ← 1K ◦ Jx ← 1K

(5)

k1 = 0 ∧ k2 = 1 ∧ k1 = k2 =⇒
(k1 = 1 ∧ k2 = 2 ∧ x = 2 ∧ k1 = k2) ◦ Jk1 ← 1K ◦ Jk2 ← 2K ◦ Jx ← 1K

(6)

k1 = 1 ∧ k2 = 0 ∧ k1 = k2 =⇒
(k1 = 2 ∧ k2 = 1 ∧ k1 = k2) ◦ Jk1 ← 2K ◦ Jk2 ← 1K ◦ Jx ← 2K

(7)

k1 = 1 ∧ k2 = 1 ∧ k1 = k2 =⇒
(k1 = 2 ∧ k2 = 2 ∧ x = 2 ∧ k1 = k2) ◦ Jk1 ← 2K ◦ Jk2 ← 2K ◦ Jx ← 2K

(8)

50

Distributed Programming Reasoning about Synchronous Message Passing

AFR-style Proof for Example 2 cont’d

Thanks to the invariant k1 = k2, (6) and (7) are vacuously true.
The right-hand-sides of the implications (5) and (8) simplify to >,
which discharges those proof obligations, e.g., for the RHS of (8):

(k1 = 2 ∧ k2 = 2 ∧ x = 2 ∧ k1 = k2) ◦ Jk1 ← 2K ◦ Jk2 ← 2K ◦ Jx ← 2K
≡ 2 = 2 ∧ 2 = 2 ∧ 2 = 2 ∧ 2 = 2

≡ >

51

Distributed Programming Reasoning about Synchronous Message Passing

What Now?

Next lecture, we’ll be looking at proof methods for termination
(convergence and deadlock freedom) in sequential, shared-variable
concurrent, and message-passing concurrent settings.

After the break, we’ll see a compositional proof method for
verification, proving properties for asynchronous communication,
and, if time on Thursday, we’ll talk about process algebra.

Assignment 1 is out! Read the spec ASAP!.

52

Distributed Programming Reasoning about Synchronous Message Passing

Levin & Gries in full, part 1
For each ` ∈ Li , the annotation Q` should only depend on Pi ’s
local variables, and shared write-only auxiliary variables. Shared
variables should only be assigned to in output transitions.

1 Prove that, for all i , the local verification conditions hold, i.e.,

|= Q` ∧ b → Q`′ ◦ f for each `
b;f−−→ `′ ∈ Ti .

2 For all i 6= j and `i
b;C⇐e;f−−−−−→ `′i ∈ Ti and `j

b′;C⇒x ;g−−−−−−→ `′j ∈ Tj

show that

|= Q`i ∧ Q`j ∧ b ∧ b′ =⇒ (Q`′i
∧ Q`′j

) ◦ f ◦ g ◦ Jx ← eK .

3 For all i 6= j and `i
bi ;C⇐e;fi−−−−−−→ `′i ∈ Ti and `j

bj ;C⇒x ;fj−−−−−−→ `′j ∈ Tj ,
and location `m of process Pm, m 6= i , j :

|= Q`i ∧ Q`j ∧ Q`m ∧ bi ∧ bj =⇒ Q`m ◦ fi ◦ fj ◦ Jx ← eK

53

Distributed Programming Reasoning about Synchronous Message Passing

Levin & Gries in full, part 2

Let k1, . . . , km be all auxiliary variables used in the transition
diagrams. We assume that φ, ψ mentions none of these auxiliaries.

4 Prove
|= φ =⇒ ∃k1, . . . , km. Qs1 ∧ . . . ∧ Qsn

and
|= Qt1 ∧ . . . ∧ Qtn =⇒ ψ

These four items suffice to prove {φ} P {ψ}, where P is the closed
product of the Pi :s.

NB

The existential quantification over the shared variables allows the
final Hoare triple to make no mention of the auxiliary variables.

54

Distributed Programming Reasoning about Synchronous Message Passing

AFR in full, part 1

For each ` ∈ Li , the annotation Q` should only depend on Pi ’s
local variables, and local write-only auxiliary variables. Auxiliary
variables should only be assigned to in I/O transitions. The
communication invariant I should only mention auxiliary variables.

1 Prove that, for all i , the local verification conditions hold, i.e.,

|= Q` ∧ b → Q`′ ◦ f for each `
b;f−−→ `′ ∈ Ti .

2 For all i 6= j and `i
bi ;C⇐e;fi−−−−−−→ `′i ∈ Ti and `j

bj ;C⇒x ;fj−−−−−−→ `′j ∈ Tj ,
and location `m of process Pm, m 6= i , j :

|= Q`i ∧Q`j ∧ b ∧ b′ ∧ I =⇒ (Q`′i
∧Q`′j

∧ I) ◦ f ◦ g ◦ Jx ← eK

55

Distributed Programming Reasoning about Synchronous Message Passing

AFR in full, part 2
Let k1, . . . , km be all auxiliary variables used in the transition
diagrams. We assume that φ, ψ mentions none of these auxiliaries.

3 Prove

|= φ =⇒ ∃k1, . . . , km. Qs1 ∧ . . . ∧ Qsn ∧ I

and
|= Qt1 ∧ . . . ∧ Qtn ∧ I =⇒ ψ

These three items suffice to prove {φ} P {ψ}, where P is the
closed product of the Pi :s.

NB

We could allow non-auxiliary variables in I , at the expense of
making proof obligation 1 more involved.

56

	Distributed Programming
	Overview

	Reasoning about Synchronous Message Passing
	intro

	

